24 de agosto de 2012

Polinização

  
A maneira pela qual as plantas se reproduzem

O objetivo principal de qualquer flor é atrair o agente polinizador, para garantir a perpetuação de espécie pela polinização. Os agentes polinizadores geralmente são insetos (entomofilia), aves (ornitofilia) e morcegos (quiropterofilia). Normalmente, as flores coloridas atraem seu agente com eficiência, devido aos diferentes tons e quantidade de cores.
Os insetos conseguem perceber tons que variam do amarelo ao vermelho com grande facilidade. As flores coloridas também se destacam entre os vários tons de verde da vegetação. Mas, as flores brancas não dispõem deste mecanismo, e, portanto utilizam o seu perfume. Este também é um mecanismo muito eficaz.
Após ser atraído, o inseto se alimenta e, ao retirar o néctar de uma planta, acaba levando o pólen dela para outra, garantindo assim a variabilidade genética. Mas quais são as partes da flor que recebem o pólen? Como ocorre a fecundação? Antes de responder estas questões, vejamos as partes de uma flor.

Partes da flor

Primeiramente as flores são formadas por três partes distintas, são elas:

  • pedúnculo: parte que sustenta a flor e está ligada ao caule;
  • receptáculo: porção dilatada do pedúnculo onde se encontram os verticilos florais;
  • verticilos florais: cálice e a corola (estes servem para proteção) e androceu e gineceu (que servem para reprodução).
O cálice é o conjunto de sépalas (folhas verdes modificadas), enquanto que a corola corresponde ao conjunto de pétalas (folhas coloridas). O androceu é o órgão masculino da flor e é formado por estames. Os estames são formados por filete, antera e conectivo. Na antera se localizam dois sacos polínicos, local onde são produzidos e armazenados os grãos de pólen.

LEIA MAIS.clicando na frase abaixo

Briófitas


Os vegetais mais antigos do mundo

Você pode achar que as briófitas são plantinhas pequenas e insignificantes. Mas aposto que não sabia que elas representam os vegetais mais antigos e que seus ancestrais provavelmente encontram-se na base da evolução de todas as plantas terrestres. Outro fato que você provavelmente não sabia é que existe uma espécie de musgo que, somando suas áreas de ocorrência ao redor do mundo, pode ser considerada como a planta mais abundante da superfície do planeta.
A maioria das briófitas ocorre em ambientes úmidos; poucas são aquáticas. Mas algumas espécies podem se desenvolver em ambientes inóspitos como desertos, o gelo dos círculos polares e rochas nuas. Estas últimas são chamadas de espécies pioneiras. Ou seja, são plantas que se desenvolvem primeiro durante a colonização de um substrato, criando condições para o desenvolvimento posterior de outros organismos.
São plantas avasculares, ou seja, não possuem vasos condutores de seiva (xilema e floema). São consideradas como intermediárias entre as algas verdes e as plantas vasculares. Elas compartilham algumas características com as algas, como, por exemplo, uma estrutura similar do cloroplasto. Porém, diferentemente destas, as briófitas já apresentam alguma organização tecidual.
As briófitas são as primeiras plantas adaptadas à vida terrestre. Para viver no meio terrestre são necessárias adaptações às condições desse meio. Uma delas é evitar a perda de água pela evaporação que ocorre na superfície da planta em contato com o ar. Para isso, as plantas terrestres apresentam, entre outras adaptações, um revestimento protetor sobre a epiderme, chamado cutícula. As plantas terrestres precisam também se fixar ao substrato. No caso das briófitas, quem realiza esta função são estruturas chamadas rizóides.
Como as briófitas não possuem sistema vascular, o transporte de água e nutrientes tem de ser feito célula a célula, através da difusão. Essa característica faz com que seu tamanho seja reduzido, pois esse sistema não permite transportar a seiva por longas distâncias de maneira rápida e eficiente.

A classificação das briófitas

As briófitas costumam ser divididas em três grupos: Hepaticae, Anthocerotae e Musci. A seguir, vermos um pouco sobre cada uma deles.

Hepaticae
O grupo é representado por cerca de 10.000 espécies que estão entre as briófitas mais simples e de menor porte. O nome Hepaticae vem do grego hepatos, que significa fígado. Isso porque essas briófitas possuem um formato que lembra tal órgão. Elas ocorrem em ambientes terrestres úmidos, na superfície de rochas, troncos de árvores e algumas poucas espécies crescem na água.

LEIA MAIS, clicando na frase abaixo

Raiz


Órgão vegetal absorve nutrientes

A beterraba é um exemplo de raiz tuberosa que armazena reservas nutritivas
A raiz, juntamente com o caule e as folhas, compõe a parte vegetativa das plantas, ou seja, aquela que não está envolvida na reprodução. Suas principais funções são a absorção de água e nutrientes e a fixação da planta no solo.
As raízes também são responsáveis pela produção de alguns hormônios vegetais, como é o caso da citosina, substância envolvida principalmente na multiplicação celular e no crescimento dos tecidos. E também existem raízes adaptadas a funções especiais, como armazenar substâncias de reserva e realizar trocas gasosas.

Classificação

De acordo com suas origens, as raízes podem ser classificadas em três tipos: primária, secundária e adventícia. As raízes primárias são aquelas originadas da radícula do embrião. As secundárias originam-se a partir de ramificações da raiz primária. Já as adventícias se originam a partir dos nós caulinares.
As raízes apresentam dois tipos de estruturação: o sistema axial (ou pivotante) e o sistema fasciculado (ou cabeleira). O sistema axial apresenta um eixo principal bem desenvolvido. Esse eixo cresce perpendicularmente ao solo e possui pequenas ramificações laterais. O sistema axial está presente nas dicotiledôneas. O sistema fasciculado não possui um eixo central e suas ramificações crescem em todas as direções. É característico das monocotiledôneas.

Crescimento primário

O crescimento primário ocorre na região apical e corresponde ao crescimento em comprimento da raiz. Essa região é recoberta por uma estrutura chamada de coifa. A coifa forma uma espécie de capa, que protege o meristema apical da raiz enquanto esta cresce e penetra no solo. O meristema apical da raiz corresponde a uma região de intensa proliferação celular.
Logo acima do meristema apical há uma zona na qual as células se tornam alongadas, promovendo o crescimento em comprimento da raiz: é a chamada região de alongamento. E, por fim, há a zona pilífera, ou região de maturação. Nela ocorre a diferenciação celular e a formação dos pelos radiculares.

Estrutura primária

Quando examinada em corte transversal, a raiz primária apresenta basicamente as seguintes camadas: epiderme, córtex e sistema vascular.
A epiderme é a camada mais externa. Ela é responsável pela absorção de água e nutrientes do solo e pela proteção da raiz. É formada por uma camada única de células e apresenta estruturas chamadas de pelos radiculares. Os pelos radiculares são prolongamentos de células epidérmicas que aumentam a superfície de contato e, consequentemente, a capacidade de absorção da raiz.
Abaixo da epiderme encontra-se o córtex. Na parte mais externa do córtex as células estão dispostas de forma bem espaçada e são unidas por plasmodesmas (canais citoplasmáticos que conectam células vizinhas). Essa região do córtex permite a circulação de ar, água e nutrientes.
Na parte mais interna do córtex encontra-se a endoderme. A endoderme é formada por uma camada de células compactadas. Suas células possuem as paredes laterais espessadas por estruturas formadas pelo depósito de suberina. Essas estruturas são chamadas de estrias de Caspary.
A presença das estrias de Caspary força a passagem da água e dos solutos oriundos da camada externa do córtex a atravessar as células da endoderme. Desta forma, a endoderme atua na seleção das substâncias que irão atingir o cilindro vascular.
Por fim, na região central, encontram-se os tecidos vasculares, ou seja, o xilema e o floema primários. O xilema situa-se mais internamente e emite projeções em direção à região externa. Intercalado com as projeções do xilema encontram-se pequenos agrupamentos de floema.
Envolvendo o xilema e o floema existe um tecido não vascular chamado periciclo. O periciclo é responsável pela formação das raízes laterais e, nas espécies com crescimento secundário, origina um tecido chamado felogênio.

LEIA MAIS, clicando na frase abaixo

Vegetais



Evolução e adaptação das plantas à vida na Terra

O pinheiro-do-paraná ou pinheiro brasileiro é um exemplo de gimnosperma
As algas marinhas de 500 milhões de anos atrás, no período Ordoviciano, deram origem aos vegetais. A Terra passou por um período de seca e muitas modificações (período Siluriano, há 435 milhões de anos) que pode ter sido um fator de seleção natural.
Para conquistarem o novo ambiente, as plantas precisaram se adaptar às suas novas condições de vida. Assim, desenvolveram vasos condutores de seiva, que garantem a distribuição das seivas bruta e elaborada pela planta.
Esta característica está diretamente ligada ao porte da planta, pois as briófitas, como os musgos, por exemplo, não apresentam esses vasos e chegam a ter no máximo 10 cm, enquanto que as gimnospermas e angiospermas podem chegar a 100 m.

Agentes polinizadores


Outra adaptação ao ambiente terrestre está relacionada às sementes e sua dispersão. O vegetal mais evoluído é aquele que apresenta sua semente protegida pelo fruto. Sua disseminação ocorre, normalmente, através de agentes polinizadores, tais como, os insetos, pássaros e morcegos, entre outros.

LEIA MAIS, clicando na frase abaixo

A Filogênese dos Seres Vivos




Qual foi o ancestral dos répteis (lagartos, cobras) que vivem na Terra atual? Essas e outras perguntas relativas à origem dos grandes grupo de seres vivos eram difíceis de serem respondidas até surgir, em 1859, a Teoria da evolução Biológica por Seleção Natural, proposta por Charles Darwin e Alfred Russel Wallace. Com a compreensão de "como" a evolução biológica ocorre, os biólogos passaram a sugerir hipóteses para explicar a possível relação de parentesco entre os diversos grupos de seres vivos.
Diagramas em forma de árvore - elaborados com dados de anatomia e embriologia comparadas, além de informações derivadas do estudo de fósseis - mostraram a hipotética origem de grupos a partir de supostos ancestrais. Essas supostas "árvores genealógicas" ou "filogenéticas" (do grego, phylon = raça, tribo + génesis = fonte, origem, início) simbolizavam a história evolutiva dos grupos que eram comparados, além de sugerir uma provável época de origem para cada um deles. Como exemplo veja a figura abaixo.




O esquema representa uma provável "história evolutiva" dos vertebrados. Note que estão representados os grupos atuais - no topo do esquema- bem como os prováveis ancestrais. Perceba que o grupo das lampreias (considerados "peixes" sem mandíbula) é bem antigo (mais de 500 milhões de anos). Já cerca de 150 milhões de anos, provavelmente a partir de um grupo de dinossauros ancestrais. Note, ainda, que o parentesco existe entre aves e répteis é maior do que existe entre mamífero e répteis, e que os três grupos foram originados de um ancestral comum.
Atualmente com um maior número de informações sobre os grupos taxonômicos passaram-se a utilizar computadores para se gerar as arvores filogenéticas e os cladogramas para estabelecer as inúmeras relações entre os seres vivos.

Nomenclatura popular



A nomeação dos seres vivos que compõe a biodiversidade constitui uma etapa do trabalho de classificação. Muitos seres são "batizados" pela população com nomes denominados populares ou vulgares, pela comunidade científica.
Esses nomes podem designar um conjunto muito amplo de organismos, incluindo, algumas vezes, até grupos não aparentados.
O mesmo nome popular pode ser atribuído a diferentes espécies, como neste exemplo:


 Ananas comosus 


Ananas ananassoides

Estas duas espécies do gênero ananas são chamadas pelo mesmo nome popular Abacaxi.
Outro exemplo é o crustáceo de praia Emerita brasiliensis, que no Rio de Janeiro é denominado tatuí, e nos estados de São Paulo e Paraná é chamado de tatuíra

Em contra partida, animais de uma mesma espécie podem receber vários nomes, como ocorre com a onça-pintada, cujo nome científico é Panthera onca.



Outros nomes populares:
canguçu, onça-canguçu, jaguar-canguçu
Um outro exemplo é a planta Manihot esculenta, cuja raiz é muito apreciada como alimento. Dependendo da região do Brasil, ela é conhecida por vários nomes: aipim, macaxeira ou mandioca.
Considerando os exemplo apresentados, podemos perceber que a nomenclatura popular varia bastante, mesmo num país como o Brasil, em que a população fala um mesmo idioma, excetuando-se os idiomas indígenas. Imagine se considerarmos o mundo todo, com tantos, com tantos idiomas e dialetos diferentes, a grande quantidade de nomes de um mesmo ser vivo pode receber. Desse modo podemos entender a necessidade de existir uma nomenclatura padrão, adotada internacionalmente, para facilitar a comunicação de diversos profissionais, como os médicos, os zoólogos, os botânicos e todos aqueles que estudam os seres vivos.


Classificação dos Seres Vivos



A sistemática é a ciência dedicada a inventariar e descrever a biodiversidade e compreender as relações filogenéticas entre os organismos. Inclui a taxonomia (ciência da descoberta, descrição e classificação das espécies e grupo de espécies, com suas normas e princípios) e também a filogenia (relações evolutivas entre os organismos). Em geral, diz-se que compreende a classificação dos diversos organismos vivos. Em biologia, os sistematas são os cientistas que classificam as espécies em outros táxons a fim de definir o modo como eles se relacionam evolutivamente.
O objetivo da classificação dos seres vivos, chamada taxonomia, foi inicialmente o de organizar as plantas e animais conhecidos em categorias que pudessem ser referidas. Posteriormente a classificação passou a respeitar as relações evolutivas entre organismos, organização mais natural do que a baseada apenas em características externas. Para isso se utilizam também características ecológicas, fisiológicas, e todas as outras que estiverem disponíveis para os táxons em questão. É a esse conjunto de investigações a respeito dos táxons que se dá o nome de Sistemática. Nos últimos anos têm sido tentadas classificações baseadas na semelhança entre genomas, com grandes avanços em algumas áreas, especialmente quando se juntam a essas informações aquelas oriundas dos outros campos da Biologia.
A classificação dos seres vivos é parte da sistemática, ciência que estuda as relações entre organismos, e que inclui a coleta, preservação e estudo de espécimes, e a análise dos dados vindos de várias áreas de pesquisa biológica.
O primeiro sistema de classificação foi o de Aristóteles no século IV a.C., que ordenou os animais pelo tipo de reprodução e por terem ou não sangue vermelho. O seu discípulo Teofrasto classificou as plantas por seu uso e forma de cultivo.
Nos séculos XVII e XVIII os botânicos e zoólogos começaram a delinear o atual sistema de categorias, ainda baseados em características anatômicas superficiais. No entanto, como a ancestralidade comum pode ser a causa de tais semelhanças, este sistema demonstrou aproximar-se da natureza, e continua sendo a base da classificação atual. Lineu fez o primeiro trabalho extenso de categorização, em 1758, criando a hierarquia atual.
A partir de Darwin a evolução passou a ser considerada como paradigma central da Biologia, e com isso evidências da paleontologia sobre formas ancestrais, e da embriologia sobre semelhanças nos primeiros estágios de vida. No século XX, a genética e a fisiologia tornaram-se importantes na classificação, como o uso recente da genética molecular na comparação de códigos genéticos. Programas de computador específicos são usados na análise matemática dos dados.
Em fevereiro de 2005 Edward Osborne Wilson, professor aposentado da Universidade de Harvard, onde cunhou o termo biodiversidade e participou da fundação da sociobiologia, ao defender um "projeto genoma" da biodiversidade da Terra, propôs a criação de uma base de dados digital com fotos detalhadas de todas a espécies vivas e a finalização do projeto Árvore da vida. Em contraposição a uma sistemática baseada na biologia celular e molecular, Wilson vê a necessidade da sistemática descritiva para preservar a biodiversidade.
Do ponto de vista econômico, defendem Wilson, Peter Raven e Dan Brooks, a sistemática pode trazer conhecimentos úteis na biotecnologia, e na contenção de doenças emergentes. Mais da metade das espécies do planeta é parasita, e a maioria delas ainda é desconhecida.
De acordo com a classificação vigente as espécies descritas são agrupadas em gêneros. Os gêneros são reunidos, se tiverem algumas características em comum, formando uma família. Famílias, por sua vez, são agrupadas em uma ordem. Ordens são reunidas em uma classe. Classes de seres vivos são reunidas em filos. E os filos são, finalmente, componentes de alguns dos cinco reinos (Monera, Protista, Fungi, Plantae e Animalia).






Estabelecendo Filogenias com os Cladogramas




Ao dispor de um grande número de características comparativas, mais confiáveis - anatômicas, embriológicas, funcionais, genéticas, comportamentais etc. - os biólogos interessados na classificação dos seres vivos puderam elaborar hipóteses mais consistentes a respeito da evolução dos grandes grupos. Influenciados pelo trabalho de Wili Hennig - um cientista alemão, especialista em insetos - passaram a apresentar as características em cladogramas. Neste tipo de diagrama, utiliza-se uma linha, cujo ponto de origem - a raiz- simboliza um provável grupo (ou espécie) ancestral. De cada surge um ramo, que conduz a um ou a vários grupos terminais. Com os cladogramas pode-se estabelecer uma comparação entre as características primitivas - que existiam em grupos ancestrais - e as derivadas - compartilhadas por grupos que os sucederam.